Viscous Flutter Analysis of a Three-Dimensional Compressor Blade

Paul Petrie-Repar and Andrew McGhee: RPM*Turbo* Pty Ltd Peter Jacobs: University of Queensland

Presentation Outline

Problem Description: geometry, flow conditions
Method: grids and flow solvers
Steady-State Results: corner separation
Unsteady Flow: aerodynamic damping
Conclusions

11 Standard Configurations for 2D profiles
Excellent for verifying unsteady CFD codes
Shortage of 3D Test Cases

3D Test Cases

Helical Fan (inviscid flow)
3D Standard Configuration 11 Rzadkowski *et al.* 2006
3D LPT Vogt & Frannson 2005

Geometry and Flow Conditions

Number of Blades	24
Blade Shape	untwisted
Chord Length	100 mm
Hub Radius	339.5 mm
Shroud Radius	424.4 mm
Stagger Angle	45.0^{o}
Inlet Mach Number	0.7
Inlet Flow Angle	55.0^{o}
Reynolds Number	1.25×10^6

Computational Method

- Flow Model: 3D Navier-Stokes equations with Spalart and Allmaras turbulent model
- No wall functions and no transition modeling.
- RPMTurbo's in-house steady-state and time-linearized Navier-Stokes flow solvers
- Hardware: Computer Cluster at the University of Queensland with 180 processors and 360 Gbytes RAM

Meshes

Resolution	Low	High
Number of Cells	455 988	1 594 728
Cells in Radial Plane	11 692	22 149
Cells in Radial Direction	39	72
Profile $y^+_{ m max}$	6.4	2.4
Hub/Shroud $y^+_{ m max}$	4.1	2.3

Steady-State Solution $M_1 = 0.7$, $\beta_1 = 55.0^{\circ}$

Flow Mach Number at 10% Blade Height

Steady-State Solution $M_1 = 0.7$, $\beta_1 = 55.0^{\circ}$

Flow Mach Number at 50% Blade Height

Steady-State Solution $M_1 = 0.7$, $\beta_1 = 55.0^{\circ}$

Flow Mach Number at 90% Blade Height

3D Standard Configuration 10: Steady-State

Steady-state at 50% blade height $M_1 = 0.7$, $\beta_1 = 55.0^{\circ}$

3D Standard Configuration 10: Steady-State

Steady-state at 10% blade height $M_1 = 0.7$, $\beta_1 = 55.0^{\circ}$

3D Standard Configuration 10: Steady-State

Steady-State at 10% Blade Height $M_1 = 0.7$, $\beta_1 = 55.0^{\circ}$

50% Blade Height: Torsion ($\omega^* = 0.5, \sigma = 0^o$)

10% Blade Height: Torsion ($\omega^* = 0.5, \sigma = 0^o$)

Aerodynamic Damping

50% Blade Height: torsion ($\omega^* = 0.5, \sigma = 90^{\circ}$)

10% Blade Height: torsion ($\omega^* = 0.5, \sigma = 90^{\circ}$)

2D Standard Configuration 10: Off-Design Flowfield

 $M_1 = 0.81, \beta_1 = 59.0$

Off-Design: Aero. Damping

Flow Condition: $M_1 = 0.81$ and $\alpha_1 = 59.0^{\circ}$ Pitching at 110.8 Hz

Farfield acoustic resonance: 56.9, -7.6, 18.8, and -9.3 degrees

ISUAAAT September 4-8 2006 Moscow - p.17

Conclusions

- Results of unsteady viscous simulations of a 3D Compressor (Standard Configuration 10) have been presented
- Corner separation predicted on suction surface at hub causes significant flow blockage
- Flow significantly different than that predicted by 2D viscous or 3D inviscid simulations
- Aerodynamic unstable (2D viscous and 3D inviscid stable)
 - Data can be downloaded from www.rpmturbo.com

