An Exact 3D Non-Reflecting Boundary Condition and Wet Steam Flow Modelling for Flutter Analysis

Paul Petrie-Repar

RPMTurbo Pty Ltd

4 September 2009

Outline

- Linearised 3D Viscous Flow Solver
- Exact 3D Non-Reflecting Boundary Condition
- Test Case: 3D Standard Configuration
- Wet Steam Flow Modelling

Philosophy

- Steady flow condition known
- Flutter: known grid motion: $\mathbf{x} = \overline{\mathbf{x}} + \widetilde{\mathbf{x}} e^{\jmath \omega t}$
- Discretised unsteady flow model: $\frac{d\mathbf{U}}{dt} = \mathbf{R}(\mathbf{U}, \mathbf{x}, \dot{\mathbf{x}})$
- Unknown flow perturbation: $\mathbf{U} = \overline{\mathbf{U}} + \widetilde{\mathbf{U}} e^{\jmath \omega t}$
- Linearisation: $\mathbf{R} \approx \overline{\mathbf{R}} + \frac{\partial \mathbf{R}}{\partial \mathbf{U}} \Delta \mathbf{U} + \frac{\partial \mathbf{R}}{\partial \mathbf{x}} \Delta \mathbf{x} + \frac{\partial \mathbf{R}}{\partial \dot{\mathbf{x}}} \Delta \dot{\mathbf{x}}$

•
$$\left[\jmath \ \omega - \frac{\partial \mathbf{R}}{\partial \mathbf{U}} \right] \mathbf{\tilde{U}} \approx \mathbf{R}(\mathbf{\overline{U}}, \mathbf{\overline{x}} + \mathbf{\tilde{x}}, \mathbf{0}) + \jmath \ \omega \ \mathbf{R}(\mathbf{\overline{U}}, \mathbf{\overline{x}}, \mathbf{\tilde{x}})$$

- 100 to 1000 times faster than time domain methods
- Single passage for turbomachinery
- Can apply exact non-reflecting boundary conditions

RPMTurbo Linearised Flow Solver

- 3D viscous flow with Spalart and Allmaras turbulence model
- Efficient parallel solver for linear systems
- 3D Euler 140 000 cells in 2 minutes (10 procs.)
- 3D Viscous 500 000 cells in 20 minutes (30 procs.)
- Validated Standard Configuration 10 and 11
- Non-reflecting boundary condition

Philosophy

- Allow outgoing waves to exit domain without reflection
- Reflected waves can pollute solution
- Decompose unsteady flow into waves (modes)
- 2D and 3D flow: must consider entire boundary
- Determine direction of each wave
- Prescribe incoming waves
- Extrapolate outgoing waves

Current Methods

- Commercial Software: use steady boundary conditions
- Assume 1D waves: apply locally
- Giles: 2D analytical modes for uniform flow
- Strip Method: apply 2D method at radial slices
- Hall/Montgomery: numerically determine 3D modes

3D Non-Reflecting Boundary Condition

Numerically determine aerodynamic modes at far-field

- Create 2D mesh for far-field
- Semi-discretized flow equations $\frac{\partial U_f}{\partial t} = A_f \frac{\partial U_f}{\partial x} + D_f U_f$
- Assuming wave-like solution $U_f = U_m(y, z) \exp\{i(k \ x + \omega \ t)\}$

• Steady flow at far-field can be non-uniform and swirling

3D Non-Reflecting Boundary Condition

Example Far-field Acoustic Modes

Geometry and Flow Conditions

Number of Blades	24
Blade Shape	untwisted
Chord Length	100 mm
Hub Radius	339.5 mm
Shroud Radius	424.4 mm
Stagger Angle	45.0°
Inlet Mach Number	0.7
Inlet Flow Angle	55.0°
Reynolds Number	$1.25 imes10^{6}$

Unsteady Linearised Inviscid Flow Solution with 3D NRBC

3D Standard Configuration 10

3D Viscous Steady Flow: $M_1 = 0.7$, $\beta_1 = 55.0^{\circ}$

Flow Mach Number at 10% Blade Height

Paul Petrie-Repar (RPMTurbo)

Non-Reflecting Boundary Condition

3D Standard Configuration 10

RPMTurbo Wet Steam Equation of State

- assume equilibrium and treat as single gaseous phase
- remove all perfect gas assumptions and use equation of state
- conserved variables: density, momentum and total energy
- Formulae from IAPWS-IF97: International Association for the Properties of Water and Steam - Industrial Formulation 1997 used to calculate pressure, temperature, speed of sound, entropy and enthalpy

Standard Configuration 11

Steady Flow ($P_0 = 13$ kPa, $T_0 = 324$ K, $P_2 = 7500$ Pa)

Steady Flow ($P_0 = 13$ kPa, $T_0 = 324$ K, $P_2 = 7500$ Pa)

Standard Configuration 11 (Inviscid Flow)

Standard Configuration 11 (Inviscid Flow)

Conclusions

- Exact 3D non-reflecting boundary condition has been developed and appears to be working well
- Wet steam flow model has been developed
- Good comparison with manufacturers data for steady-state
- Wet steam effects appear to be significant for unsteady flow

EXTRA SLIDES

Code Validation - Standard Configuration 10

Aerodynamic damping for torsion mode ($\omega^* = 0.5$)

Test Case: Standard Configuration 11

Test Case: Standard Configuration 11

3D Standard Configuration 10

Standard Configuration 10: $M_1 = 0.7$, $\beta_1 = 55.0^{\circ}$

Flow Mach Number at 50% Blade Height

Paul Petrie-Repar (RPMTurbo)

Non-Reflecting Boundary Condition

3D Standard Configuration 10

3D Standard Configuration 10: Steady-State

Stream lines on hub and profile: $M_1 = 0.7$, $\beta_1 = 55.0^{\circ}$