GT2014-26874:Advanced Flutter Analysis of a Long Shrouded Steam Turbine Blade

Paul Petrie-Repar ¹ & Vasily Makhnov ² & Prof. Nikolay Shabrov ³
& Prof. Evgueni Smirnov ³ & Sergey Galaev ³ & Kirill Eliseev ³

¹RPMTurbo

²LMZ Power Machines

³St. Petersburg State Polytechnical University

20 June 2014

Title: Advanced Flutter Analysis of a Long Shrouded Steam Turbine Blade

- Flutter Analysis for Turbomachinery (Steam Turbines)
- LMZ Steam Turbines
- Current Project: Flutter Analysis of New Blade
- Method Description: Linearized flow solver (multi-row steady-state, URANS, wet-steam, 3D-NRBC)
- Results of current flutter analysis
- Conclusions

Flutter: self-excited vibration due to the interaction between aerodynamic and structural dynamic forces. Classical flutter is due to an adverse phase difference between the structural motion and the unsteady aerodynamic forces.

Aeroelastic System for Turbomachinery

- Assume each blade is identical (tuned blades)
- Unsteady aerodynamic forces do not alter structural deformation or frequency
- Each blade has only 1 degree of freedom (single structural mode)
- Unsteady flow perturbations are linear with respect to blade vibrations (small perturbation)
- Blades are coupled aerodynamically and possibly structurally
- Each blade has same relative equation of motion (cyclic symmetric)

RPMтикво 🇳 鯼

Aeroelastic eigenmodes are Travelling Wave Modes (TWM)

- For each TWM mode the blades are oscillating at equal amplitude with a constant phase shift between adjacent blades
- Inter-blade phase angle:

$$\sigma_n = rac{2\pi n}{N}$$
, $(0 < n < N-1)$

Flutter Analysis for Turbomachinery

- Examine stability for each TWM
- Determine unsteady flow (pressure) response
- Determine work done by unsteady pressure on blade
- Positive work: potential flutter problem

Logarithmic Decrement:

$$\delta = \frac{-W_{aero}}{2 \text{ K.E.max}}$$

Flutter in Steam Turbines

- Flutter vibrations have been observed by several manufacturers
- Occurs at blade mode frequency from first family of modes
- Not associated with an engine order (Campbell diagram)
- Mostly affects the last stage
- Complex blade geometry: long and twisted
- Low blade natural frequency (current case: $\omega^* < 0.2$ to 0.45)
- High tip speed (current case 700 m/s)
- Transonic flow near tip
- Multi phase flow (wet steam)

RPM*turbo*

History

- Founded in 1857, started producing steam turbines in 1907
- Russia's largest manufacturer of power machines
- LMZ turbines installed in 700 power stations in 40 countries
- Since 2000, LMZ is part of Power Machines company

Today

- In late 1970s, LMZ produced steam turbines rated at 1200 MW
- This series of machines have 1.2m titanium blades for the last stage
- Shrouded blade > integral tip covers
- Blades never failed but minor wearing of contact zones
- Occassionally required repair and overhaul

RPМ*тикво* 崰 🎯

Vibration Control

- In the 2000s, LMZ installed a system for online vibration control
- Regular vibrations at specific frequencies occurred
- Vibrations corresponded to first group of blade modes at backward-running nodal diameters
- Vibrations were identified as flutter
- Amplitude of vibrations were small and posed no threat to blade but did cause wearing in contant zones

Flutter Prediction

- In 2007, LMZ began cooperation with RPMTurbo
- Initial project was blind test with 9 OPs
- Some OPs from real machines with field data (not disclosed)
- RPMTurbo performed linearized flow simulations to predict log.-dec
- Results of RPMTurbo flutter analysis agreed with field data

(RPMTurbo/LMZ/SPbSPU)

Steam Turbine Flutter Analysis

Scope of Paper

Scope of Paper

- LMZ designed new series of steam turbines
- Greater exhaust area
- Reduced overall axial length
- Last stage: 1.2m shrouded blade
- Full speed: 3000 RPM
- Aim: Flutter analysis of last stage
- Calculated log.-dec. values compared with values from similar reference blade
- Reference blade has known safe working history

RPMтикво 崰 鯼

RPMTurbo - LUFT[®] Linearised Unsteady Flow solver for Turbomachinery

- 3D URANS flow with Spalart and Allmaras turbulence model
- Turbulence model is fully linearised
- 3D non-reflecting boundary condition (3D-NRBC)
 - solution independent of farfield location
- Wet steam equation of state (equilibrium IAPWS-IF97)
- Tip clearance flow
- Validated Standard Configuration 10 and 11
- Fast and robust linear solver 1.1 million cells in 1 hour (1D NRBC) or 5 hours (3D NRBC)
- Multi-row steady-state
- Complex mode shapes

Philosophy

- Allow outgoing waves to exit domain without reflection
- Reflected waves can pollute solution
- Decompose unsteady flow into waves (modes)
- 2D and 3D flow: must consider entire boundary
- Determine direction of each wave
- Prescribe incoming waves
- Extrapolate outgoing waves

RPM*turbo*

3D Non-Reflecting Boundary Conditic **RPM**тикво

Numerically determine aerodynamic modes at far-field

- Create 2D mesh for far-field
- Semi-discretized flow equations $\frac{\partial U_f}{\partial t} = A_f \frac{\partial U_f}{\partial x} + D_f U_f$
- Assuming wave-like solution
 U_f = U_m(y, z) exp{i(k x + ω t)}
- Solve eigen problem to determine modes $A_f^{-1}[\omega I + iD_f]U_m = kU_m$

- Method presented at 2010 Turbo Expo
- Demonstrated that unsteady flow solution is independent of far-field location

RPMтикво 崰 🏈

- Multi-row steady-state simulatons with nozzle & turbine & exhaust
- Flow models: RANS-wet-steam, RANS-ideal, inviscid-wet-steam and inviscid-ideal
- Equilibrium wet-steam equation of state: IAPWS-IF97
- Boundary layer fully resolved ($y^+ < 5.0$) for RANS
- Unsteady single row flutter simulation

Section	Flow	Number	Min. Angle
		Cells	(degrees)
Nozzle	RANS	763200	24.45
Turbine	RANS	798208	35.44
Exhaust	RANS	24010	69.80
Turbine	Inviscid	543760	34.84
Exhaust	Inviscid	19110	71.19

RPМтикво 崰 🏈

Turbine Inlet Flow Conditions

Ideal Gas Model: k = 1.11 (match polytropic index)

Steady-State Results

RPМ*тикво* 崰 🏽

(RPMTurbo/LMZ/SPbSPU)

20 June 2014 14 / 24

Mode Shape and Grid Motion

- Shrouded blades have complex mode shape
- Two modes with 90 deg phase difference
- Mode shape and frequency vary with nodal diameter

Mode Shape and Grid Motion

Grid motion at 90% span for nodal diameter 15

(RPMTurbo/LMZ/SPbSPU)

Steam Turbine Flutter Analysis

20 June 2014 16 / 24

Unsteady Flow

RPМтикво 崰 🍭

Least stable mode n = -15 (Viscous/Ideal/3D-NRBC)

(RPMTurbo/LMZ/SPbSPU)

RPМтикво 崰 🌒

Least stable mode n = -15

RPМ*ти*гво 🇳 🌒

Least stable mode n = -15 (Inviscid/Ideal/3D-NRBC)

Different blade, lower pressure ratio, subsonic flow at turbine outlet

RPМтикво 崰 🌒

Different blade, lower pressure ratio, subsonic flow at turbine outlet

Aerodynamic Damping versus Span

Unsteady Work at 90% Height

Near least stable mode n = -15 (Inviscid/Ideal)

- Flutter analysis has been performed on a steam turbine blade from the last stage
- Advanced flow modeling features included: multi-row steady-state, URANS, 3D-NRBC, wet steam
- Calculated minimum log.-dec. value higher (more stable) than reference blade
- Reference blade is similar and has a safe working history
- 3D-NRBC are important for steam turbine flutter
- Viscous and wet-steam effects are minor for the case examined

Thank You for Listening

Vielen Dank für Ihre Aufmerksamkeit