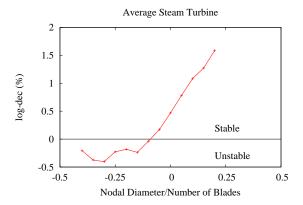
ESTABLISHMENT OF A STEAM TURBINE FLUTTER TEST CASE

Paul Petrie-Repar

RPMTurbo Pty Ltd

13 September 2012

Paul Petrie-Repar (RPMTurbo)


Steam turbine flutter

13 September 2012 1 / 28

Outline

- Motivation steam turbine flutter wet steam effects
- Wet Steam Model in RPMTurbo LUFT[®] code
- Define Test Case: Standard Configuration 11
- Results: Wet Steam Flow Modelling
- Conclusions and Future Work

Motivation - Steam Turbine Flutter

- Flutter is a problem for steam turbines
- Need to predict minimum log.-dec value as accurately as possible

Log.-Dec Calculation

$$\delta = \frac{W_{\text{aero}}}{4 \ \textit{KE}_{\text{aver}}}$$

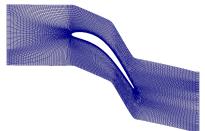
Unsteady Aerodynamics Modelling

• 3D flow

- Viscous turbulent flow (off-design)
- Far-field boundary conditions (non-reflecting) RPMTurbo 2010
- Complex mode shapes
- Tip clearance flow for non-shrouded blades (Glodic 2012)
- Multi-row effects (Li He 2006)
- Wet steam effects (no published results)

Wet Steam Equation of State

- assume equilibrium and treat as single gaseous phase
- remove all perfect gas assumptions and use equation of state
- conserved variables: density, momentum and total energy
- formulae from IAPWS-IF97: International Association for the Properties of Water and Steam - Industrial Formulation 1997 used to calculate pressure, temperature, speed of sound, entropy and enthalpy

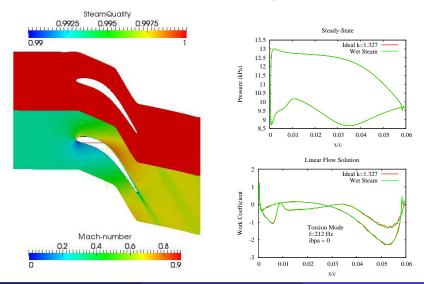

 $\mathsf{RPMTurbo} \text{ - } \mathsf{LUFT}^{\texttt{R}} \textbf{ L} inearised \textbf{ Unsteady } \textbf{F} low for \textbf{ T} urbomachinery}$

- 3D viscous flow -turbulence model fully linearised
- 3D non-reflecting boundary conditions
- fast 1.1 millions cells in 1 hour (1D NRBC) or 5 hours (3D NRBC)

2D Turbine - Standard Configuration 11 - Fransson et al. (1999)

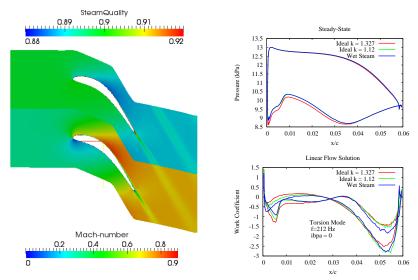
(
Chord length	77.8 mm
Stagger angle	40.85
Blade Mode	torsion
Mode frequency	212.0 Hz

2D mesh - 23790 cells

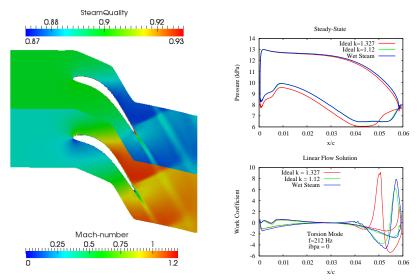


New wet steam flow conditions

- 1 subsonic dry steam
- 2 subsonic wet steam
- 3 transonic wet steam

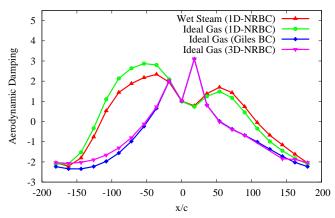

Flow condition	1	2	3
Inlet total pressure (kPa)	13.0	13.0	13.0
Inlet total temperature (K)	400.0	324.0	324.0
Inlet total quality	1.0	0.9	0.9
Exit pressure (kPa)	9.75	9.75	7.5
y^+ first grid line on profile	0.08	0.11	0.11
Outlet Mach number	0.661	0.656	0.913
Reynolds number (millions)	0.126	0.143	0.156
Polytropic index	1.31	1.11	1.11
Reduced frequency (full chord)	0.329	0.381	0.277

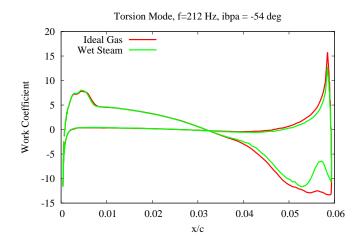
Condition 1 - Subsonic Dry Steam


Paul Petrie-Repar (RPMTurbo)

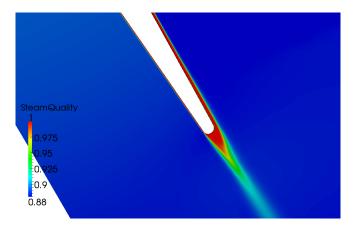
Condition 2 - Subsonic Wet Steam

Paul Petrie-Repar (RPMTurbo)

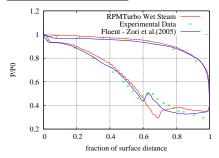

Condition 3 - Transonic Wet Steam

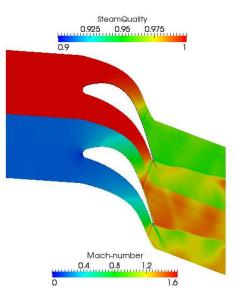

Paul Petrie-Repar (RPMTurbo)

Condition 3 - Transonic Wet Steam


Torsion Mode, f=212 Hz

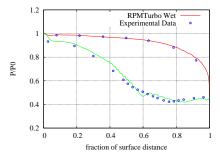
Condition 3 - Transonic Wet Steam

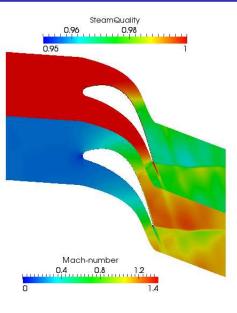



Condition 3 - Transonic Wet Steam

Steam Turbine Test Case - Case L1

5th stage stator of 6-stage LPT White, Young & Walters (1996)		
Chord Length	137.51 mm	
Stagger Angle	45.32°	
Inlet P ₀	40.3 kPa	
Inlet T ₀	354.0 K	
Exit p	16.3 kPa	
Re	712 000	





Steam Turbine Test Case - Case L3

.

5th stage stator of 6-stage LPT White, Young & Walters (1996)		
Chord Length	137.51 mm	
Stagger Angle	45.32°	
Inlet P ₀	41.7 kPa	
Inlet T ₀	357.5 K	
Exit p	20.6 kPa	
Re	779 000	

Conclusions

- \bullet Wet steam equation of state in RPMTurbo ${\sf LUFT}^{\textcircled{R}}$ code
- Wet steam flutter test case established initial results published
- Implementation appears to be correct more testing required
- Differences between ideal steam and wet steam flow models
- Non-equilibrium effects may be important in some cases
- Improve test case increase chord to match Reynolds number
- Publish results on web: www.rpmturbo.com